Solutions for a quasilinear elliptic equation with critical Sobolev exponent and perturbations on \({\mathbb{R}}^N\) (Q5933777)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Solutions for a quasilinear elliptic equation with critical Sobolev exponent and perturbations on \({\mathbb{R}}^N\) |
scientific article; zbMATH DE number 1604525
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Solutions for a quasilinear elliptic equation with critical Sobolev exponent and perturbations on \({\mathbb{R}}^N\) |
scientific article; zbMATH DE number 1604525 |
Statements
Solutions for a quasilinear elliptic equation with critical Sobolev exponent and perturbations on \({\mathbb{R}}^N\) (English)
0 references
14 June 2001
0 references
quasilinear elliptic equations
0 references
Sobolev critical exponent
0 references
The author considers the quasilinear elliptic problem NEWLINE\[NEWLINE\begin{cases} NEWLINE- \operatorname{div}(|\nabla u|^{p-2} \nabla u) + c |u|^{p^*-2} u = |u|^{p^*-2} u + f(x,u) + h(x) \\ NEWLINEu \in W^{1,p}(\mathbb{R}^N), 2\leq p <N \end{cases} NEWLINE\]NEWLINE and study how the perturbations \(f\) and \(h\) affect the multiplicity of the solutions of the problem.
0 references