Solutions for a quasilinear elliptic equation with critical Sobolev exponent and perturbations on \({\mathbb{R}}^N\) (Q5933777)

From MaRDI portal





scientific article; zbMATH DE number 1604525
Language Label Description Also known as
English
Solutions for a quasilinear elliptic equation with critical Sobolev exponent and perturbations on \({\mathbb{R}}^N\)
scientific article; zbMATH DE number 1604525

    Statements

    Solutions for a quasilinear elliptic equation with critical Sobolev exponent and perturbations on \({\mathbb{R}}^N\) (English)
    0 references
    0 references
    14 June 2001
    0 references
    quasilinear elliptic equations
    0 references
    Sobolev critical exponent
    0 references
    The author considers the quasilinear elliptic problem NEWLINE\[NEWLINE\begin{cases} NEWLINE- \operatorname{div}(|\nabla u|^{p-2} \nabla u) + c |u|^{p^*-2} u = |u|^{p^*-2} u + f(x,u) + h(x) \\ NEWLINEu \in W^{1,p}(\mathbb{R}^N), 2\leq p <N \end{cases} NEWLINE\]NEWLINE and study how the perturbations \(f\) and \(h\) affect the multiplicity of the solutions of the problem.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references