Perturbation method for a class of nonlinear Dirac equations (Q5933783)

From MaRDI portal





scientific article; zbMATH DE number 1604531
Language Label Description Also known as
English
Perturbation method for a class of nonlinear Dirac equations
scientific article; zbMATH DE number 1604531

    Statements

    Perturbation method for a class of nonlinear Dirac equations (English)
    0 references
    0 references
    14 June 2001
    0 references
    perturbations
    0 references
    Dirac equations
    0 references
    The author studies the solution \(\psi(x_0,x)=\exp(i\omega x_0)\Phi(x)\) of the Dirac equations NEWLINE\[NEWLINEi\sum^3_{j= 0}\gamma^j\partial_{x_j}\psi- m\psi+ \gamma^0\nabla F(\psi)= 0,\quad F(\psi)= \{G(\overline\psi\psi)+ H(\overline\psi \gamma^5\psi)\}/2NEWLINE\]NEWLINE under the conditions \(G(0)= H(0)= 0\), \(g(at)= G'(at)= a^\theta g(t)\), \(h(at)= H'(at)= a^\theta h(t)\), \(0\leq\theta< 1\). When \(\Phi(x)= (\alpha\phi(\lambda x),\beta\chi(\lambda x))\); \(\alpha= \lambda\beta/(m- \omega)\) etc., the system NEWLINE\[NEWLINE(\sigma p)\chi- \phi+ g(\phi^2)\phi+ K_1(\varepsilon, \phi,\chi)= 0,\quad (\sigma p)\phi+ 2m\chi+ K_2(\varepsilon, \phi,\chi)= 0NEWLINE\]NEWLINE expressed by \(D(\varepsilon, \phi,\chi)= 0\) is derived. Here \(\sigma p= i\sum_{j=1}^3\sigma^j\partial_{x_j}\), \(\varepsilon= m-\omega\geq 0\), and \(D:\mathbb{R}\times X\times X\to Y\times Y\), where \(X= H^1(\mathbb{R}^3, C^2)\), \(Y= L^2(\mathbb{R}^3, C^2)\). When \(\varepsilon= 0\), the system becomes \(-\Delta\phi/(2m)+ \phi- g(\phi^2)\phi= 0\), \(\chi= -(\sigma p)\phi/(2m)\) with the solution \((\phi_0,\chi_0)\). Let \(X_r\subset X\times X\), \(N= \text{Ker }D_{\phi,\chi}(0, \phi_0,\chi_0)\) and \(N\oplus N^\perp= X\times X\).NEWLINENEWLINENEWLINEResult 1. When \(h\equiv 0\), there exist \(\delta> 0\) and \(\eta\in C((0,\delta),X_r)\) such that \(\eta(0)= (\phi_0,\chi_0)\) and \(D(\varepsilon, \eta(\varepsilon))= 0\).NEWLINENEWLINENEWLINEResult 2. There exist \(\delta>0\), a nbd. \(W_0\) of \(0\) in \(N\) and \(\eta\in C^1((0,\delta)\times W_0, N^\perp)\) such that \(\eta(0,0)= (\phi_0, \chi_0)\) and \(D(\varepsilon, Q_1+\eta(\varepsilon, Q_1))= 0\) for \(Q_1\in W_0\).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references