Positive solutions of diffusive logistic equations (Q5935721)

From MaRDI portal





scientific article; zbMATH DE number 1610931
Language Label Description Also known as
English
Positive solutions of diffusive logistic equations
scientific article; zbMATH DE number 1610931

    Statements

    Positive solutions of diffusive logistic equations (English)
    0 references
    0 references
    13 October 2002
    0 references
    diffusive logistic equation
    0 references
    indefinite weight
    0 references
    positive solution
    0 references
    degenerate boundary condition
    0 references
    The existence and uniqueness of positive solutions in the space \(C^{2+\theta}(\overline{D}),\) \(0<\theta <1,\) is studied for a class of degenerate elliptic boundary value problems: NEWLINE\[NEWLINE \begin{cases} -\Delta u=\lambda (m(x)-h(x)u)u\;\;& \text{in }D, \cr Bu:=a(x')\frac{\partial u}{\partial {\mathbf n}}+b(x')u=0\;\;& \text{on }\partial D,\end{cases} NEWLINE\]NEWLINE where \(D\) is a bounded domain of Euclidean space \({\mathbb R}^{N},\) \(N\geq 2,\) with smooth boundary \(\partial D.\) The boundary condition \(B\) is degenerate in the following sense: NEWLINE\[NEWLINE a(x')+b(x')>0 \text{ on }\partial D,\text{ and } b(x')\neq 0\text{ on }\partial D. NEWLINE\]NEWLINE The main result of the paper describes the changes that occur in the structure of the positive solutions when the parameter \(\lambda \) varies near the first eigenvalue of the corresponding linearized eigenvalue problem: NEWLINE\[NEWLINE \begin{cases} -\Delta \varphi =\lambda m(x)\varphi & \text{in }D, \cr B\varphi =0 & \text{ on }\partial D.\end{cases} NEWLINE\]NEWLINE It generalizes a result of \textit{J. M. Fraile, P. Koch Medina, J. López-Gómez} and \textit{S. Merino} [J. Differ. Equations 127, No.~1, 295-319, Art. No.0071 (1996; Zbl 0860.35085)].
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references