The double square root, Jacobi polynomials and Ramanujan's master theorem (Q5937197)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The double square root, Jacobi polynomials and Ramanujan's master theorem |
scientific article; zbMATH DE number 1618660
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The double square root, Jacobi polynomials and Ramanujan's master theorem |
scientific article; zbMATH DE number 1618660 |
Statements
The double square root, Jacobi polynomials and Ramanujan's master theorem (English)
0 references
9 June 2003
0 references
rational functions
0 references
double square root
0 references
Jacobi polynomials
0 references
evaluation of definite integrals of rational functions
0 references
Let NEWLINE\[NEWLINEN_{0,4}(a;m): =\int^\infty_0 {dx\over (x^4+2a x^2+1)^{m +1}}, \;a>-1,\;m=1,2, \dotsNEWLINE\]NEWLINE and define NEWLINE\[NEWLINEP_m(a): ={1\over\pi} 2^{m+3/2} (a+ 1)^{m+1/2} N_{0,4}(a;m).NEWLINE\]NEWLINE The authors prove that \(P_m(a)\) is a polynomial in \(a\) given by NEWLINE\[NEWLINEP_m(a)= 2^{-2m} \sum^m_{k=0}2^k{2m-2k \choose m-k} {m+k \choose m}(a+1)^k.NEWLINE\]NEWLINE The proof is based on the Taylor expansion of the double square root and Ramanujan's Master Theorem.
0 references