Topological entropy for differentiable maps of intervals (Q5937402)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Topological entropy for differentiable maps of intervals |
scientific article; zbMATH DE number 1619060
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Topological entropy for differentiable maps of intervals |
scientific article; zbMATH DE number 1619060 |
Statements
Topological entropy for differentiable maps of intervals (English)
0 references
13 June 2002
0 references
transversal points
0 references
growth rate
0 references
topological entropy
0 references
homoclinic point
0 references
The results of the paper generalize the known relation between the topological entropy \(h(f)\) and the growth rate of the number of periodic points: \(h(f)\leq \lim\sup_{n \to\infty} {1\over n}\log\# \text{Per}(f,n)\), where \(\text{Per} (f,n)\) is the set of fixed points of \(f^n\), \(n\geq 1\), and \(\#A\) is the number of elements of \(A\). Let \(f:I\to I\) be a \(C^{1+ \varepsilon}\) map of a compact interval \(I\). A periodic point \(p\) of \(f\) with period \(n\) is a source if \(\nu(p)= |(f^n)'(p) |^{1/p}>1\).NEWLINENEWLINENEWLINEMain notations:NEWLINENEWLINENEWLINEa) \(\text{Per} (f,n,\nu,\delta)= \{p\in\text{Per}(f,n): \nu(p)\geq \nu\), \(|f'(f^i(p))|\geq\delta\), \(0\leq i\leq n-1\}\),NEWLINENEWLINENEWLINEb) \(\overline {TH(p)}\) is the transversal homoclinic closure of \(p\),NEWLINENEWLINENEWLINEc) \(H(p,m,\delta) =\{q\in W^u_{\text{loc}}(p): f^{(m)}(q)=p\), \(|f'(f^i(q)) |\geq \delta,0\leq i\leq m-1\}\).NEWLINENEWLINENEWLINEMain results of the paper:NEWLINENEWLINENEWLINE1) \(h(f)=\max \{0,\lim_{\nu\to 1} \lim_{\delta\to 0} \limsup_{n\to\infty} {1\over n} \log\text{Per}(f,n,\nu,\delta)\).NEWLINENEWLINENEWLINE2) If \(h(f)>0\) then \(h(f)= \sup\{h(f |_{\overline{TH(p)}}\})=\max\{0,\lim_{\delta\to 0}\limsup_{m\to\infty}{1\over m}\log H(p,m, \delta)\}\).NEWLINENEWLINENEWLINE3) The following statements are equivalent: (i) \(h(f)>0\), (ii) \(f\) has a transversal homoclinic point of source, (iii) \(f\) has a homoclinic point of a periodic point.
0 references