Interpolation of weighted Sobolev spaces (Q5938483)
From MaRDI portal
scientific article; zbMATH DE number 1622418
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Interpolation of weighted Sobolev spaces |
scientific article; zbMATH DE number 1622418 |
Statements
Interpolation of weighted Sobolev spaces (English)
0 references
22 July 2001
0 references
Let \(\Omega\) be a domain of the space \(\mathbb R^n\), let \(\omega(x)\) and \(\{\omega_\alpha(x)\}\) be positive continuous functions on \(\Omega\), and let \(H^m_{p\psi}(\Omega)\) and \(L_{p,\omega}(\Omega)\) be weighted spaces with the respective norms \[ \begin{gathered} \|u\|_{H^m_{p,\psi}(\Omega)}= \left(\sum_{|\alpha|\leq m}\omega_\alpha(x)|D^\alpha u(x)|^p dx\right)^{1/p}, \\ \|u\|_{L_{p,\omega}(\Omega)}= \left(\sum_\Omega\omega(x) D^\alpha u(x) ^p dx\right)^{1/p}. \end{gathered} \] Next, let \((H^m_{p\psi}(\Omega),L_{p,\omega}(\Omega))_{\theta,p}\) be the interpolation space constructed by real interpolation. The main results of the article consist in describing the properties of these spaces. These properties can be used for studying eigenvalue problems with a sign-changing weighted function.
0 references
interpolation spaces
0 references
weighted Sobolev spaces
0 references
embedding theorems
0 references
real interpolation
0 references
eigenvalue problems
0 references
sign-changing weighted function
0 references