Interpolation of weighted Sobolev spaces (Q5938483)

From MaRDI portal
scientific article; zbMATH DE number 1622418
Language Label Description Also known as
English
Interpolation of weighted Sobolev spaces
scientific article; zbMATH DE number 1622418

    Statements

    Interpolation of weighted Sobolev spaces (English)
    0 references
    0 references
    22 July 2001
    0 references
    Let \(\Omega\) be a domain of the space \(\mathbb R^n\), let \(\omega(x)\) and \(\{\omega_\alpha(x)\}\) be positive continuous functions on \(\Omega\), and let \(H^m_{p\psi}(\Omega)\) and \(L_{p,\omega}(\Omega)\) be weighted spaces with the respective norms \[ \begin{gathered} \|u\|_{H^m_{p,\psi}(\Omega)}= \left(\sum_{|\alpha|\leq m}\omega_\alpha(x)|D^\alpha u(x)|^p dx\right)^{1/p}, \\ \|u\|_{L_{p,\omega}(\Omega)}= \left(\sum_\Omega\omega(x) D^\alpha u(x) ^p dx\right)^{1/p}. \end{gathered} \] Next, let \((H^m_{p\psi}(\Omega),L_{p,\omega}(\Omega))_{\theta,p}\) be the interpolation space constructed by real interpolation. The main results of the article consist in describing the properties of these spaces. These properties can be used for studying eigenvalue problems with a sign-changing weighted function.
    0 references
    interpolation spaces
    0 references
    weighted Sobolev spaces
    0 references
    embedding theorems
    0 references
    real interpolation
    0 references
    eigenvalue problems
    0 references
    sign-changing weighted function
    0 references

    Identifiers