Classification of irreducible modules for the vertex operator algebra \(M(1)^+\). II: Higher rank (Q5938611)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Classification of irreducible modules for the vertex operator algebra \(M(1)^+\). II: Higher rank |
scientific article; zbMATH DE number 1623139
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Classification of irreducible modules for the vertex operator algebra \(M(1)^+\). II: Higher rank |
scientific article; zbMATH DE number 1623139 |
Statements
Classification of irreducible modules for the vertex operator algebra \(M(1)^+\). II: Higher rank (English)
0 references
3 September 2001
0 references
The vertex operator algebra \(M(1) ^{+}\) is the fixed point set of the free bosonic vertex operator algebra \(M(1)\) of rank \(l\) under the \(-1\) automorphism. All irreducible modules for \(M(1) ^{+}\) are classified in this paper for any \(l\). NEWLINENEWLINEFor Part I, see J. Algebra 216, No. 1, 384--404 (1999; Zbl 0929.17032).
0 references