Chebyshev's method for number fields (Q5939696)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Chebyshev's method for number fields |
scientific article; zbMATH DE number 1626598
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Chebyshev's method for number fields |
scientific article; zbMATH DE number 1626598 |
Statements
Chebyshev's method for number fields (English)
0 references
30 July 2001
0 references
Let \(\alpha\) be an irrational algebraic integer such that \({\mathbb{Q}}(\alpha) / {\mathbb{Q}}\) is Galois. If \(S\) is the set of primes splitting in \({\mathbb{Q}}(\alpha)\) then NEWLINE\[NEWLINE \sum_{p \in S,\;p \leq x} 1\gg \frac{x^{1/d}}{\log x}, \quad \text{where} \quad d= [{\mathbb{Q}}(\alpha) : {\mathbb{Q}}]. NEWLINE\]NEWLINE The proof uses binomial coefficients and extends Chebyshev's classical approach.
0 references