The hyperbola \(xy=N\) (Q5939697)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The hyperbola \(xy=N\) |
scientific article; zbMATH DE number 1626599
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The hyperbola \(xy=N\) |
scientific article; zbMATH DE number 1626599 |
Statements
The hyperbola \(xy=N\) (English)
0 references
30 July 2001
0 references
asymptotic results
0 references
divisor function
0 references
lattice points on hyperbolas
0 references
Let \(xy=N\), be a given hyperbola \(xy=N\), where \(N\) is a natural number. The authors ask for the distribution of at most \(k\) lattice points on the curve or, what is the same, for the distribution of at most \(k\) divisors of \(N\). Let \(k\) be a fixed natural number and \(0< \gamma< 1\). Define NEWLINE\[NEWLINE\varepsilon_k(\gamma)= \liminf \{\varepsilon\mid N^\gamma\ll a_1<\cdots< a_k\leq a_1+ N^\varepsilon\},NEWLINE\]NEWLINE where all \(a_i\) are divisors of \(N\). Then it is proved that there is a constant \(c>0\) with NEWLINE\[NEWLINE\varepsilon_k \biggl( \frac 12 \biggr)< \frac 12- \frac{c} {\log k}.NEWLINE\]NEWLINE Another result concerns the divisor function \(d_\alpha(n)= \#\{(a,b)\mid a,b\in (N,N+N^\alpha]\), \(ab=n\}\). It is proved that for fixed \(0< \alpha< 1\) NEWLINE\[NEWLINE\sum d_\alpha^2(n)= 2N^{2\alpha}+ O(N^{3\alpha-1} \log N)+ O(N^\alpha).NEWLINE\]
0 references