The hyperbola \(xy=N\) (Q5939697)

From MaRDI portal





scientific article; zbMATH DE number 1626599
Language Label Description Also known as
English
The hyperbola \(xy=N\)
scientific article; zbMATH DE number 1626599

    Statements

    The hyperbola \(xy=N\) (English)
    0 references
    0 references
    0 references
    30 July 2001
    0 references
    asymptotic results
    0 references
    divisor function
    0 references
    lattice points on hyperbolas
    0 references
    Let \(xy=N\), be a given hyperbola \(xy=N\), where \(N\) is a natural number. The authors ask for the distribution of at most \(k\) lattice points on the curve or, what is the same, for the distribution of at most \(k\) divisors of \(N\). Let \(k\) be a fixed natural number and \(0< \gamma< 1\). Define NEWLINE\[NEWLINE\varepsilon_k(\gamma)= \liminf \{\varepsilon\mid N^\gamma\ll a_1<\cdots< a_k\leq a_1+ N^\varepsilon\},NEWLINE\]NEWLINE where all \(a_i\) are divisors of \(N\). Then it is proved that there is a constant \(c>0\) with NEWLINE\[NEWLINE\varepsilon_k \biggl( \frac 12 \biggr)< \frac 12- \frac{c} {\log k}.NEWLINE\]NEWLINE Another result concerns the divisor function \(d_\alpha(n)= \#\{(a,b)\mid a,b\in (N,N+N^\alpha]\), \(ab=n\}\). It is proved that for fixed \(0< \alpha< 1\) NEWLINE\[NEWLINE\sum d_\alpha^2(n)= 2N^{2\alpha}+ O(N^{3\alpha-1} \log N)+ O(N^\alpha).NEWLINE\]
    0 references

    Identifiers