The discrete spectrum of the perturbed periodic Schrödinger operator in the large coupling constant limit. (Q5940427)
From MaRDI portal
scientific article; zbMATH DE number 1631818
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The discrete spectrum of the perturbed periodic Schrödinger operator in the large coupling constant limit. |
scientific article; zbMATH DE number 1631818 |
Statements
The discrete spectrum of the perturbed periodic Schrödinger operator in the large coupling constant limit. (English)
0 references
9 August 2001
0 references
Consider the self-adjoint operator \[ Au=-\Delta u+pu, \;\;u\in D(A)=H^2(\mathbb{R}^d), \] in the \(L_2(\mathbb{R}^d)\), where a function \(\in L_{\infty}(\mathbb{R}^d)\) take real values and \(p(x+n)=p(x), \;\;x\in \mathbb{R}^d, n\in \mathbb{Z}^d\). Let \(V\):\([1,\infty)\to \mathbb{R}_+\) be a smooth function and \(\lim\limits_{r\to\infty}r^sV(r)=\nu_a,\;2<s<2+r/(d-1),\;\nu_a>0\). By \(V_0\) it is denoted the operator of multiplication by the function \(V(| x| )\) extended by zero for \(| x| <1\). Put \(A(\alpha):= A-\alpha V_0, \;\alpha>0\). The symbol \(E_{A(\alpha)}(\cdot)\) denotes the spectral measure for \(A(\alpha)\). Let \((\lambda_-,\lambda_+)\) be a fixed gap in the spectrum of \(\sigma(A)\). Let \(\lambda_-<\lambda_1<\lambda_2<\lambda_+\). The main result of the paper gives an asymptotic estimate of the entire spectrum multiplicity of the operator \(A(\alpha)\) in the interval \((\lambda_1,\lambda_2)\) as \(\alpha\to\infty\). More precisely, the following is prove \[ \lim_{\alpha\to\infty}\alpha^{-d/s} \text{rank}\, E_{A(\alpha)}(\lambda_{1}, \lambda_2)= \int_{R^d} (\rho(\lambda_2+\nu_a| x| ^{-s})-\rho (\lambda_1+ \nu_a| x| ^{-s}))\,dx, \] where the function \(\rho\) is defined by means of \(A(\alpha)\).
0 references
discrete spectrum
0 references
periodic Schrödinger operator
0 references
number of eigenvalues
0 references