The Obrechkoff transform on spaces of generalized functions (Q5940644)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The Obrechkoff transform on spaces of generalized functions |
scientific article; zbMATH DE number 1633078
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The Obrechkoff transform on spaces of generalized functions |
scientific article; zbMATH DE number 1633078 |
Statements
The Obrechkoff transform on spaces of generalized functions (English)
0 references
12 August 2001
0 references
hyper-Bessel differential operator
0 references
Meijer transforms
0 references
general differential operator of Bessel-type
0 references
Obreshkov transform
0 references
McBride functional space
0 references
kernel method
0 references
analyticity
0 references
boundedness
0 references
inversion formula
0 references
The integral transformation introduced by \textit{N. Obreshkov} [Izv. Mat. Institut Bulg. Akad. Sci., Sofia, 3-28 (1958, in Bulgarian); English transl. in East J. Approx. 3, No. 1, 89-110 (1997; Zbl 0896.45003)] stands for a generalization of the classical Laplace and Meijer transforms, and is closely related to a general differential operator of Bessel-type (also called ``hyper-Bessel differential operator''): NEWLINE\[NEWLINEB= x^{\alpha_0}{d\over dx} x^{\alpha_1}{d\over dx}\cdots x^{\alpha_{m-1}}{d\over dx} x^{\alpha_m}= x^{-\beta} \prod^m_{j=1} \Biggl(x{d\over dx}+ \beta\gamma_k\Biggr)NEWLINE\]NEWLINE with \(m\in\mathbb{N}\), \(\beta= m-(\alpha_0+ \alpha_1+\cdots+ \alpha_m)> 0\), \(\gamma_k= (\alpha_k+ \alpha_{k+1}+\cdots+ \alpha_m- m+ k)/\beta\), \(k= 1,\dots, m\).NEWLINENEWLINENEWLINEIn the present paper the authors study the Obreshkov transform in the following form: NEWLINE\[NEWLINEO\{f(t); z\}=\beta z^{-\beta(\gamma_m+ 1)+ 1} \int^\infty_0 G^{m,0}_{0,m}((zt)^\beta\mid (\gamma_k+ 1-1/\beta)^m_1) f(t) dt,NEWLINE\]NEWLINE where \(G^{m,0}_{0,m}\) is an interesting particular case of the Meijer-\(G\) function [see \textit{V. Kiryakova}, ``Generalized fractional calculus and applications'', Pitman Res. Notes Math. Ser. 301 (1994; Zbl 0882.26003)] and analyze \(O\{f(t); z\}\) on the McBride functional space \(F_{p,\mu}\) (\(\mu\in\mathbb{C}\), \(1\leq p<\infty\)) [see \textit{A. C. McBridge}, ``Pitman Res. Notes Math. 31 (1979; Zbl 0423.46029)] by means of the kernel method. Properties of the generalized transform, such as analyticity, boundedness and an inversion formula are established, thus extending results given by \textit{A. Baier} and \textit{H.-J. Glaeske} [Math. Nachr. 159, 311-322 (1992; Zbl 0774.46025)] and \textit{J. J. Betancor} and \textit{L. Rodriguez-Mesa} [Math. Nachr. 185, 21-31 (1997; Zbl 0902.46019)].
0 references