The \(n-\)sided control point surfaces without twist constraints (Q5940970)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The \(n-\)sided control point surfaces without twist constraints |
scientific article; zbMATH DE number 1635121
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The \(n-\)sided control point surfaces without twist constraints |
scientific article; zbMATH DE number 1635121 |
Statements
The \(n-\)sided control point surfaces without twist constraints (English)
0 references
20 August 2001
0 references
In \textit{J. J. Zheng} and \textit{A. A. Ball} [ibid. 14, No. 9, 807-821 (1997; Zbl 0897.65009)], an \(n\)-sided control point surface is presented. For the cases \(n=3,5,\) and 6, \textit{R. Hall} and \textit{G. Mullineux} [ibid. 16, No. 3, 165-175 (1999; Zbl 0914.68199)] generalized Zheng-Ball construction so that corner twist vectors are avoided. This paper generalizes Hall and Mullineux's results to arbitrary \(n\)-sided cases.
0 references
Zheng-Ball construction
0 references
Control point surfaces
0 references
Symmetric parameters
0 references
sided surfaces
0 references
0.89389944
0 references
0.85659856
0 references
0.8517241
0 references
0.8496184
0 references
0.84881544
0 references
0.84164846
0 references
0.83427614
0 references
0.83327127
0 references
0.82954836
0 references
0.82935846
0 references