On secondary modules over Dedekind domains (Q5943056)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On secondary modules over Dedekind domains |
scientific article; zbMATH DE number 1642145
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On secondary modules over Dedekind domains |
scientific article; zbMATH DE number 1642145 |
Statements
On secondary modules over Dedekind domains (English)
0 references
22 October 2001
0 references
Dedekind domains
0 references
indecomposable secondary modules
0 references
Let \(R\) be a commutative ring. An \(R\)-module \(M\) is secondary if left multiplication by an element of \(R\) is either a surjective or a nilpotent endomorphism of \(M\). The author classifies such modules when \(R\) is local and Dedekind. NEWLINENEWLINENEWLINELet \(P\) be the maximal ideal of \(R\). The three types of indecomposable secondary modules are (i) \(R/P^n\); (ii) the injective hull of \(R/P\); (iii) the field of fractions of \(R\).
0 references