Oscillation for forced odd-order neutral differential equations (Q5943377)

From MaRDI portal
scientific article; zbMATH DE number 1649224
Language Label Description Also known as
English
Oscillation for forced odd-order neutral differential equations
scientific article; zbMATH DE number 1649224

    Statements

    Oscillation for forced odd-order neutral differential equations (English)
    0 references
    0 references
    0 references
    18 November 2002
    0 references
    The authors consider the \(n\)th-order neutral differential equation with a forcing term of the form \[ \frac{d^n}{dt^n}[x(t)-R(t)x(t-\tau)]+P(t)x(t-\sigma)=f(t),\quad t\geq t_0,\tag{1} \] where \(n\geq 1\) is an odd integer, \(\tau>0\), \(\sigma\geq 0\); \(R, P\in C([t_0, \infty), [0, \infty))\), \(f\in C([t_0, \infty),\mathbb{R})\); \(0\leq R(t) \leq c<1\), \(\int^{\infty}_{t_0}P(s) ds=\infty\). The results of this paper are as follows: (i) Under the assumptions of equation (1), every nonoscillatory solution to (1) tends to zero provided \[ \lim_{t\rightarrow \infty}t^{n-1}f(t)=0,\;\int^{\infty}_t(s-t)^{n-1}|f(s)|ds<\infty \text{ for fixed }t\geq t_0,\tag{A1} \] \[ \int^{\infty}_t(s-t)^{n-1}|f(s)|ds\in L^1[t_0, \infty) \quad\text{and}\quad \lim_{t\rightarrow \infty}\int^{\infty}_t(s-t)^{n-1}|f(s)|ds=0; \] (ii) Under the assumptions of equation (1) and (A1), equation (1) is oscillatory provided the following two conditions hold: \[ P(t)\geq p>0 \quad\text{and}\quad \sigma p^{1/n}/n>1/e,\tag{A2} \] (A3) there exist a function \(H(t)\), two constants \(h_1, h_2\) and sequences \(\{t_m'\}, \{t_m''\}\) such that \[ H'(t)=P(t)\int^{\infty}_{t-\sigma }\frac{(s-t-\sigma)^{n-1}}{(n-1)!}f(s) ds, \;H(t_m')=h_1, H(t_m'')=h_2, \lim_{m\rightarrow \infty}t_m'=\lim_{m\rightarrow \infty}t_m''=\infty \] and \(h_1\leq H(t)\leq h_2\) for \(t\geq t_0\); (iii) Under the assumptions of equation (1), (A1) and (A3), equation (1) with \(n=1\) is oscillatory provided \(\liminf _{t\rightarrow \infty}\int^t_{t-\sigma }P(s) ds>1/e\).
    0 references
    0 references
    neutral equation
    0 references
    oscillation
    0 references
    forcing term
    0 references
    odd order
    0 references

    Identifiers