On Müntz rational approximation rate in \(L^p\) spaces (Q5944133)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On Müntz rational approximation rate in \(L^p\) spaces |
scientific article; zbMATH DE number 1652659
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On Müntz rational approximation rate in \(L^p\) spaces |
scientific article; zbMATH DE number 1652659 |
Statements
On Müntz rational approximation rate in \(L^p\) spaces (English)
0 references
27 June 2002
0 references
Müntz rational functions
0 references
degree of approximation
0 references
\(L^p\)-norm
0 references
0 references
Let \(\Lambda:\lambda_1 <\lambda_2< \dots< \lambda_n<\dots\) be an increasing sequence such that for a certain \(M>0\), NEWLINE\[NEWLINE \lambda_{n+1} -\lambda_n \geq M n, \quad n \geq 1. NEWLINE\]NEWLINE The corresponding set of Müntz polynomials \(\Pi_n(\Lambda)\) is the linear space generated by the powers \(\{ x^{\lambda_1}, \dots, x^{\lambda_n}\}\), and the Müntz rational functions of degree \(n\), NEWLINE\[NEWLINE R_n(\Lambda)=\{P/Q:P,\;Q \in \Pi_n(\Lambda),\;Q \geq 0 \text{ on } (0,1],\;P/Q \text{ continuous at } x=0 \}. NEWLINE\]NEWLINE Moreover, for \( f \in L^p[0,1]\), \(1 \leq p \leq \infty\), as usual NEWLINE\[NEWLINE R_n(f)_{L^p}=\inf_{r \in R_n(\Lambda)} \|f-r\|_{L^p[0,1]}, NEWLINE\]NEWLINE NEWLINE\[NEWLINE \omega(f, t)_{L^p}=\sup_{|h|\leq t} \|f(\cdot + h) - f( \cdot) \|_{L^p[0,1]}. NEWLINE\]NEWLINE The main result of the paper asserts that there exists a constant \(C_M\) (depending upon \(M\) and valid for all \(p\geq 1\)) such that for all \(f \in L^p[0,1]\), NEWLINE\[NEWLINE R_n(f)_{L^p} \leq C_M \omega(f, 1/n)_{L^p}. NEWLINE\]NEWLINE For \(p=1\) this theorem has been proved by \textit{J. Bak} in [J. Approximation Theory 20, 46-50 (1977; Zbl 0352.41011)].
0 references