Les invariants \(\theta_p\) des 3-variétés périodiques. (The \(\theta_p\) invariants of periodic 3-manifolds) (Q5944306)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Les invariants \(\theta_p\) des 3-variétés périodiques. (The \(\theta_p\) invariants of periodic 3-manifolds) |
scientific article; zbMATH DE number 1653458
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Les invariants \(\theta_p\) des 3-variétés périodiques. (The \(\theta_p\) invariants of periodic 3-manifolds) |
scientific article; zbMATH DE number 1653458 |
Statements
Les invariants \(\theta_p\) des 3-variétés périodiques. (The \(\theta_p\) invariants of periodic 3-manifolds) (English)
0 references
8 October 2001
0 references
The author computes \(\theta_p\) invariants, introduced by \textit{C. Blanchet, N. Habegger, G. Masbaum} and \textit{P. Vogel} [Topology 31, No. 4, 685-699 (1992; Zbl 0771.57004)], for \(r\)-periodic 3-manifolds. Where an \(r\)-periodic 3-manifold means that the cyclic group \(\mathbb{Z}/_{r\mathbb{Z}}\) acts differentially on the 3-manifold and the set of fixed points is a circle. This result shows that \(\theta_p\) invariants are dependent on the geometry of the 3-manifolds.
0 references
periodic 3-manifold
0 references
periodic link
0 references
homology sphere
0 references
quantum invariants
0 references
0.90169513
0 references
0.88778657
0 references
0.8856908
0 references
0.88430345
0 references
0.8608044
0 references