Boundary value problems on the half-line with impulses and infinite delay (Q5945752)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Boundary value problems on the half-line with impulses and infinite delay |
scientific article; zbMATH DE number 1657542
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Boundary value problems on the half-line with impulses and infinite delay |
scientific article; zbMATH DE number 1657542 |
Statements
Boundary value problems on the half-line with impulses and infinite delay (English)
0 references
1 May 2003
0 references
impulses
0 references
infinite delay
0 references
boundary value problems
0 references
existence
0 references
uniqueness
0 references
0 references
0 references
0 references
0 references
0.92802644
0 references
0.92462176
0 references
0.92024904
0 references
0.91205424
0 references
0.9096068
0 references
The following problem is considered NEWLINE\[NEWLINE\begin{cases} (Lx)(t)+ f(t, x_t)= 0,\;t\neq t_k,\;\Delta x|_{t=t_k}= I_k(x_{t_k}),\;k= 1,2,\dots, m,\\ \lambda x(0)- \beta\lim_{t\to 0} p(t) x'(t)= a,\;\gamma x(\infty)+ \delta\lim_{t\to\infty} p(t) x'(t)= b,\\ x(t)\text{ is bounded on }[0,+\infty),\end{cases}\tag{1}NEWLINE\]NEWLINE where \(x_t\) is defined by \(x_t(s)= \begin{cases} x(t+ s),\;t\geq t+ s\geq 0;\\ \phi(t+ s),\;-\infty< t+ s< 0,\end{cases}\) NEWLINE\[NEWLINE(Lx)(t)= {1\over p(t)} (p(t) x'(t))',\;p\in C([0, +\infty), R)\cap C^1(0,+\infty),\;p(t)> 0\quad\text{for }t\in (0,\infty),NEWLINE\]NEWLINE \(\Delta x|_{t_k}= \lim_{\varepsilon\to 0^+} [x(t_k+ \varepsilon)- x(t_k- \varepsilon)]\) and \(\lambda\), \(\beta\), \(a\), \(\gamma\), \(\delta\), \(b\), \(\phi(t)\) are given. The existence and uniqueness of a solution to problem (1) are proved.
0 references