Multivariate Padé approximants to a meromorphic function (Q5948565)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Multivariate Padé approximants to a meromorphic function |
scientific article; zbMATH DE number 1669976
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Multivariate Padé approximants to a meromorphic function |
scientific article; zbMATH DE number 1669976 |
Statements
Multivariate Padé approximants to a meromorphic function (English)
0 references
2001
0 references
convergence of approximants
0 references
explicit representation of approximants
0 references
multivariate Padé approximant
0 references
0 references
The author studies multivariate Padé approximation for the functions NEWLINE\[NEWLINEG_q(x,y): =\sum^\infty_{j=1} {1\over xy+q^j x+q^{2j}}NEWLINE\]NEWLINE with complex parameters \(q\) of modulus \(>1\). For positive integers \(m\) and \(n\) with \(m\geq 2n+4\) he finds an explicit representation of the \((M,N)\) multivariate Padé approximant to \(G_q\) with respect to the interpolation set \(E\), where NEWLINE\[NEWLINE\begin{aligned} N & =\bigl\{ (i,j)\in\mathbb{N}^2_0: i,j\leq 2n\bigr\}\\ M & =N\cup\bigl\{ (i,j)\in \mathbb{N}^2_0: i+j\leq m-2\bigr\} \end{aligned}NEWLINE\]NEWLINE and NEWLINE\[NEWLINEE=\bigl\{(i,j) \in\mathbb{N}^2_0: i+j \leq m+2n-2 \bigr\}.NEWLINE\]NEWLINE Moreover, for fixed \(n\) and \(m\to\infty\) he proves locally uniform convergence of the \((M,N)\) approximants to \(G_q\) on the set \(B\setminus S\) where NEWLINE\[NEWLINEB=\bigl\{ (x,y):0<|x|,|y|<|q |^n\bigr\}NEWLINE\]NEWLINE and NEWLINE\[NEWLINES=\left\{ (x,y):\prod^{2n-1}_{j=0} (xy+q^{n-j} x+q^{2n-2j})= 0\right\} \cup \bigl\{(0,0) \bigr\}.NEWLINE\]
0 references