Positive solutions for higher-order Lidstone boundary value problems. A new approach via Sperner's lemma (Q5948820)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Positive solutions for higher-order Lidstone boundary value problems. A new approach via Sperner's lemma |
scientific article; zbMATH DE number 1672044
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Positive solutions for higher-order Lidstone boundary value problems. A new approach via Sperner's lemma |
scientific article; zbMATH DE number 1672044 |
Statements
Positive solutions for higher-order Lidstone boundary value problems. A new approach via Sperner's lemma (English)
0 references
12 November 2001
0 references
positive solution
0 references
boundary value problems
0 references
Sperner's lemma
0 references
0 references
0 references
The author considers the higher-order nonlinear Lidstone boundary value problem NEWLINE\[NEWLINEx^{(2n)}(t)=-f(t, x(t),\dots ,x^{(2i)}(t),\dots ,x^{(2n-2)}(t)),\;0\leq t\leq 1,\quad x^{(2i)}(0)=0=x^{(2i)}(1),NEWLINE\]NEWLINE and shows the existence of a solution satisfying \(x^{(2i)}(t)>0, 0<t<1,\) \(i=0,1,\dots ,n-1,\) provided that the function \(f\in ([0,1]\times \mathbb{R}_{+}^{n},\mathbb{R}_{+})\) is superlinear or sublinear. Other analogous results are proved. The main tool used is Sperner's lemma. This distinguished approach is different from others previously used to show related results (see for instance [\textit{L. H. Erbe} and \textit{H. Wang}, Proc. Am. Math. Soc. 120, No. 3, 743-748 (1994; Zbl 0802.34018); \textit{L. H. Erbe} and \textit{M. Tang}, Differ. Equ. Dyn. Syst. 4, No. 3-4, 313-320 (1996; Zbl 0868.35035), and \textit{J. M. Davis, P. W. Eloe} and \textit{J. Henderson}, J. Math. Anal. Appl. 237, No. 2, 710-720 (1999; Zbl 0935.34020)]).
0 references