Some identities involving Bernoulli and Stirling numbers. (Q5949915)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Some identities involving Bernoulli and Stirling numbers. |
scientific article; zbMATH DE number 1678868
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Some identities involving Bernoulli and Stirling numbers. |
scientific article; zbMATH DE number 1678868 |
Statements
Some identities involving Bernoulli and Stirling numbers. (English)
0 references
5 December 2001
0 references
degenerate Bernoulli number
0 references
Bernoulli number
0 references
Stirling number
0 references
0.93554246
0 references
0.9203113
0 references
0.91358626
0 references
0.9061321
0 references
Let \(B_k\) denote the \(k\)-th Bernoulli number, \(S_r^m\) the Stirling numbers of the first kind, where \(1\leq r\leq m\). The authors derive formulas for sums of the type NEWLINE\[NEWLINE\sum_{k=1}^{m+1}\frac{f(k)B_kS_m^{k-1}}{k}NEWLINE\]NEWLINE in the cases \(f(k)=2^k, 2^k-1, 1.\)
0 references