On the Diophantine equation \(ax^3+bx^2+cx+dy+e = xyz\) (Q5950858)

From MaRDI portal





scientific article; zbMATH DE number 1683285
Language Label Description Also known as
English
On the Diophantine equation \(ax^3+bx^2+cx+dy+e = xyz\)
scientific article; zbMATH DE number 1683285

    Statements

    On the Diophantine equation \(ax^3+bx^2+cx+dy+e = xyz\) (English)
    0 references
    18 December 2001
    0 references
    The author proves the following assertion. Let \(a,b,c,d\) and \(e\) be nonnegative integers; \(ade \neq 0\). Then the equation \[ ax^3+bx^2+ cx+dy+ e=xyz \] has a finite number of solutions in natural numbers \(x,y,z\). This is a generalization of a result of \textit{A. M. S. Ramasamy} and \textit{S. P. Mohanty} [J. Indian Math. Soc., New Ser. 62, 210--214 (1996; Zbl 0899.11011)].
    0 references
    cubic Diophantine equation
    0 references

    Identifiers