Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth (Q5951618)

From MaRDI portal





scientific article; zbMATH DE number 1686326
Language Label Description Also known as
English
Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth
scientific article; zbMATH DE number 1686326

    Statements

    Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth (English)
    0 references
    0 references
    0 references
    0 references
    20 October 2003
    0 references
    critical exponent
    0 references
    potential changing sign
    0 references
    linking type solutions
    0 references
    The authors of this paper investigate the existence of linking type solutions for the problem NEWLINE\[NEWLINE\begin{cases} -\Delta u(x)-\lambda u(x) = W(x)f(u) & \text{in }\Omega\subset \mathbb{R}^N,\\ u(x)|_{\partial \Omega}=0\end{cases}\tag{1}NEWLINE\]NEWLINE where \(w\in C(\overline\Omega)\) is a changing sign function, \(f\) has a superlinear growth and \(\lambda\) is a positive real parameter.NEWLINENEWLINENEWLINELet \(0<\lambda_1<\lambda_2\leq \cdots\leq \lambda_k\leq \lambda_{k+1}\leq \cdots\) be the sequence of eigenvalues of the operator \(-\Delta\) with respect to the zero boundary conditions on \(\Omega\). \(X_k\) denotes the \(k\)-dimensional subspace of the Sobolev space \(H^1_0(\Omega)\) spanned by the eigenfunctions related to \(\{\lambda_1,\dots,\lambda_k\}\). It is assumed that \(f\in C^0(\mathbb{R})\) and put \(F(t)=\int^t_0 f(\xi) d\xi\), \(t\in\mathbb{R}\) and, for \(N\geq 3\), \(2^*=\frac{2N}{N-2}\).NEWLINENEWLINENEWLINEOne of the main results states that the problem (1) admits a nontrivial solution \(u\) if the following conditions hold: NEWLINENEWLINENEWLINE(i) \(f(t)t\geq \beta F(t)\), \(t\in \mathbb{R}\); (ii) \(|f(t)|\leq C|t|^{\beta-1}\), \(t\in\mathbb{R}\), for some \(\beta \in (2,2^*)\); (iii) if \(k\) is the positive integer number such that \(\lambda\in [\lambda_k,\lambda_{k+1})\), then \(W\) verify \(W^-(f(t)t-\beta F(t))\leq \gamma(t)^2\) \(t\geq R>0\) sufficiently large for some \(\gamma\in (0,(\frac\beta 2-1)(\lambda_{k+1}-\lambda))\), where \(W^-=\max\{W^-(x):x\in\overline{\Omega}\}\), \(W^-(x)=-\min\{W(x),0\}\), \(x\in\Omega\); (iv) \(\text{meas}\{x\in\Omega: W(x)=0\}=0\); (v) \(W^+(x)=W(x)+W^-(x)\neq 0\); (vi) \(\int_\Omega W(x)F(v(x))dx\geq 0\), \(v\in X_k\); (vii) exists \(\overline v\in X^\perp_k\setminus\{0\}:\int_\Omega W(x)F(v(x)) dx\geq C_0\int_\Omega |v(x)|^\beta dx,\) \(v\in X_k\oplus\text{span}\{\overline v\}\), with \(\|v\|\geq R\).NEWLINENEWLINENEWLINEAnother result also states that the problem (1) admits a nontrivial solution \(u\) if the previous assumptions are satisfied with \(\beta=2^*\) and for \(N\geq 5\), \(F\) is convex, \(W\in C^3(\overline{\Omega})\), and \(\lim_{\varepsilon\to 0}(\varepsilon^{\frac{N+2}{2}})=|s|^{2^*-2}s\), uniformly w.r. to \(s\in\mathbb{R}\), NEWLINE\[NEWLINE\lim_{\mu\to 0}\mu^{\frac{N-2}{4}}\int^{\frac{1}{\sqrt{\mu}}}_0 \;\frac{\rho^2-1}{(1+\rho^2)^{N/2}}\left[f\left(\frac{\mu^{\frac{2-N}{4}}}{(1+p^2)^{\frac{N-2}{2}}}-\frac{\mu^{-\frac{N+ 2}{4}}}{(1+\rho^2)^{\frac{N+2}{2}}}\right)\right]\;\rho^{N-1} d\rho=0.NEWLINE\]NEWLINE In order to prove these results, it is shown that the functional \(I(u)=\frac 12\int_\Omega|\nabla u|^2 dx-\frac\lambda 2\int_\Omega u^2 dx-\int_\Omega W(x)F(u) dx\), \(u\in H^1_0(\Omega)\) satisfies the Palais-Smale condition, and also, the behaviour of Palais-Smale sequences is studied.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references