Some comparison theorems for Sturm-Liouville eigenvalue problems (Q5952273)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Some comparison theorems for Sturm-Liouville eigenvalue problems |
scientific article; zbMATH DE number 1688670
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Some comparison theorems for Sturm-Liouville eigenvalue problems |
scientific article; zbMATH DE number 1688670 |
Statements
Some comparison theorems for Sturm-Liouville eigenvalue problems (English)
0 references
29 September 2002
0 references
eigenvalue problem
0 references
peak of the eigenfunction
0 references
comparison theorem
0 references
variational method
0 references
0 references
Let \(p,p_1,q,q_1\in C([a, b],(0,\infty))\), \(p,p_1\in C^1[a, b]\), and \(\rho,\rho_1\in C([a, b],[0,\infty))\). Let \(u(z)> 0\) be an eigenfunction to the eigenvalue problem NEWLINE\[NEWLINE(pu')'(z)-\rho u(z)+\lambda qu(z)= 0,\quad u(a)= u(b)= 0,NEWLINE\]NEWLINE corresponding to the first eigenvalue \(\lambda\). Let \(v(z)> 0\) be an eigenfunction to the eigenvalue problem NEWLINE\[NEWLINE(pv')'(z)- \rho v(z)+\lambda qv(z)= 0,\quad v(a)= v(b)= 0,NEWLINE\]NEWLINE corresponding to the first eigenvalue \(\lambda_1\). Let \(z_0\) be the first maximum point of \(u(z)\) in \((a,b)\) and \(z_1\) the first maximum point of \(v(z)\) in \((a,b)\). The author gets some comparison theorems on the relative positivity of \(z_0\) and \(z_1\) by means of the variational method.
0 references