Inequalities of Hlawka type for matrices (Q5953410)

From MaRDI portal





scientific article; zbMATH DE number 1694226
Language Label Description Also known as
English
Inequalities of Hlawka type for matrices
scientific article; zbMATH DE number 1694226

    Statements

    Inequalities of Hlawka type for matrices (English)
    0 references
    0 references
    27 October 2002
    0 references
    Main results: For every \(n\in {\mathbb N}\), \(n\geq 2\), and every complex \(n\times n\) matrix \(A\), \[ \|A-\text{Tr }A\|_1\leq\|A\|_1 + (n-2)|\text{Tr }A|,\text{ and }\|A\|_1\leq \|A-\frac 1{n-1}\text{Tr }A\|_1+(n-2)|\text{Tr }A|/(n-1). \] These inequalities are matrix generalizations of the following Hlawka-type inequality: \[ \|a-\text{Tr }a\|_{\ell^1}\leq\|a\|_{\ell^1}+(n-2)|\text{Tr }a|,\qquad a\in {\mathbb C}^n, \] and the author obtains them by establishing the following general inequalities: Let \(n\in {\mathbb N}\), \(n\geq 2\), and let \(A,B\in M_n({\mathbb C})\). (i) If \(AB=BA\) and \(B\geq 0\), then \[ \text{Tr }(B|A-\text{Tr }BA|)\leq\max\{2\gamma(B)-1,1\} \text{Tr } B|A|+ (\text{Tr }B- 2\gamma(B))|\text{Tr }BA|, \] where \(\gamma(B)\) denotes the minimum positive eigenvalue of \(B\); (ii) If \(0\leq B\leq I\) and \(A\) is normal, then \[ \text{Tr }(B|A-\text{Tr }BA|)\leq\text{Tr }B|A|+ (\text{Tr }B-2\delta(B))|\text{Tr }BA|, \] where \(\delta(B)\) denotes the minimum eigenvalue of \(B\).
    0 references
    0 references
    matrix norm
    0 references
    Hlawka-type inequality
    0 references
    matrix inequality
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references