A class of maximal operators with rough kernel on product spaces (Q5954278)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A class of maximal operators with rough kernel on product spaces |
scientific article; zbMATH DE number 1699463
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A class of maximal operators with rough kernel on product spaces |
scientific article; zbMATH DE number 1699463 |
Statements
A class of maximal operators with rough kernel on product spaces (English)
0 references
14 February 2002
0 references
maximal operators
0 references
rough kernel
0 references
singular integral operators
0 references
product spaces
0 references
0.78106904
0 references
0.7699239
0 references
0.75151765
0 references
0.75104654
0 references
0.73609006
0 references
0 references
Consider the class of singular integral operators NEWLINE\[NEWLINET_K f(x,y)= \int^\infty_0 \int^\infty_0 \iint_{S^{n-1}\times S^{m-1}} K(r\xi, s\eta) f(x- r\xi, y-s\eta) r^{n-1} s^{n-1} d\xi d\eta dr ds,NEWLINE\]NEWLINE where \(K\) is a kernel of the form \(K(r\xi,s\eta)= r^{-n} s^{-m} \sum_j a_j(r, s)\Omega_j(\xi, \eta)\) with \(\Omega_j\in L^q(S^{n-1} \times S^{m-1})\), \(1< q\leq\infty\), \(\Omega_j(t\xi, s\eta)= \Omega_j(\xi,\eta)\) for any \(t,s> 0\), \(\int_{S^{n-1}} \Omega_j(\xi,\eta) d\xi= 0\) for any \(\eta\in S^{n-1}\), and \(\int_{S^{m-1}} \Omega_j(\xi,\eta) d\xi= 0\) for any \(\xi\in S^{m-1}\).NEWLINENEWLINENEWLINELet \(M\) and \(q'\) denote by the class of all kernels \(K\) and the conjugate index of \(q\), respectively. The authors proved the theorem that if \(q\) and \(p\) satisfy one of the following conditions: NEWLINE\[NEWLINE1< q< 2\quad\text{and}\quad \max\{2nq'/(2n+nq'- 2), 2mq'/(2m+ mq'- 2)\}< p< 2q'/(q'- 2),\tag{a}NEWLINE\]NEWLINE NEWLINE\[NEWLINE2\leq q\leq \max\{2(n- 1)/(n- 2), 2(m-1)/(m-2)\}\quad\text{and}\tag{b}NEWLINE\]NEWLINE NEWLINE\[NEWLINE\max\{2nq'/(2n+ nq'- 2), 2mq'/(2m+ mq'- 2)\}< p<\infty,NEWLINE\]NEWLINE NEWLINE\[NEWLINEq> \max\{2(n-1)/(n-2), 2(m-1)/(m- 2)\}\tag{c}NEWLINE\]NEWLINE and \(1< p<\infty\), then the maximal operator \(\sup_{K\in M}|T_k f|\) is bounded on \(L^p(\mathbb{R}^{n-1}\times \mathbb{R}^{m-1})\). This result is an extension of \textit{L.-K. Chen} and \textit{X. Wang} [J. Math. Anal. Appl. 164, No. 1, 1-8 (1992; Zbl 0764.42011)] to product spaces.
0 references