Dynamics of solutions of a singular diffusion equation (Q5954505)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Dynamics of solutions of a singular diffusion equation |
scientific article; zbMATH DE number 1700813
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Dynamics of solutions of a singular diffusion equation |
scientific article; zbMATH DE number 1700813 |
Statements
Dynamics of solutions of a singular diffusion equation (English)
0 references
4 February 2002
0 references
asymptotic profile
0 references
energy estimates
0 references
uniform convergence
0 references
0.95634323
0 references
0.9536952
0 references
0 references
0.9340771
0 references
0.93344456
0 references
0 references
0.9294954
0 references
0.9284284
0 references
The aim of the article is to show that for any constant \(0 < c_1 < \infty\) and convex, smooth, bounded domain \(\Omega \subset \mathbb{R}^n\), and \(u_0\) satisfying \(c_1 \leq u_0 \in L^p(\Omega)\) for some \(p > \max(1,n/2)\) if \(u\) is the solution of NEWLINE\[NEWLINEu_t = \Delta (\log u), \quad \text{in } \Omega\times (0,\infty), \qquad u > 0 \quad \text{on } \overline{\Omega}\times (0,\infty),NEWLINE\]NEWLINE NEWLINE\[NEWLINEu(x,t)= c_1 \quad \text{on } \partial\Omega\times (0,\infty), \qquad u(x,0) = u_0(x) \quad \text{in } x\in\Omega, NEWLINE\]NEWLINE and \(v = \log (u/c_1)\), \(w = e^{(\lambda_1/c_1)t}\), then the function \(w\) will converge uniformly to \(A\phi_1\) on \(\Omega\) for some constant \(A\) as \(t\to\infty\), where \(\lambda_1\) and \(\phi_1\) are the first positive eigenvalue and eigenfunction of the Laplace operator on \(\Omega\) with \(\|\phi_1\|_{L^2(\Omega)} = 1\), respectively.
0 references