Duprime and dusemiprime modules (Q5956885)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Duprime and dusemiprime modules |
scientific article; zbMATH DE number 1713715
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Duprime and dusemiprime modules |
scientific article; zbMATH DE number 1713715 |
Statements
Duprime and dusemiprime modules (English)
0 references
8 September 2002
0 references
lattice-ordered monoids
0 references
duprime modules
0 references
dusemiprime modules
0 references
polyform modules
0 references
hereditary pretorsion classes
0 references
0 references
A lattice-ordered monoid is a structure \((L;\oplus,0_L;\leq)\) where \((L;\oplus,0_L)\) is a monoid, \((L,\leq)\) is a lattice and the binary operation \(\oplus\) distributes over finite meets. If \(M\in R\text{-Mod}\) then the set \(L_M\) of all hereditary pretorsion classes of \(\sigma[M]\) is a lattice-ordered monoid with binary operation given by NEWLINE\[NEWLINE\alpha:_M\beta=\{N\in\sigma[M]\mid\exists A\leq N\;A\in\alpha,\;N/A\in\beta\},NEWLINE\]NEWLINE where \(\alpha,\beta\in L_M\). \(\sigma[M]\) is called duprime (resp. dusemiprime) if \(M\in\alpha:_M\beta\) implies \(M\in\alpha\) or \(M\in\beta\) (resp. \(M\in\alpha:_M\alpha\) implies \(M\in\alpha\)), for any \(\alpha,\beta\in L_M\). The main results of this paper characterize these notions in terms of properties of the subgenerator \(M\). The authors show, for example, that \(M\) is duprime (resp. dusemiprime) if \(M\) is strongly prime (resp. strongly semiprime). The converse is not true in general, but holds if \(M\) is polyform or projective in \(\sigma[M]\) (Theorem 3.3). The authors also investigate the notions of duprime and dusemiprime in conjunction with finiteness conditions on \(L_M\), such as coatomicity and compactness (Theorems 4.9, 4.13).
0 references