Positive solutions for nonlinear elastic beam models (Q5957229)

From MaRDI portal





scientific article; zbMATH DE number 1716611
Language Label Description Also known as
English
Positive solutions for nonlinear elastic beam models
scientific article; zbMATH DE number 1716611

    Statements

    Positive solutions for nonlinear elastic beam models (English)
    0 references
    0 references
    6 April 2003
    0 references
    elastic beam
    0 references
    positive solution
    0 references
    eigenvalue
    0 references
    boundary value problem
    0 references
    Let \(\lambda_1\) be the first eigenvalue of the problem NEWLINE\[NEWLINEu''''=\lambda u,\quad 0< x< 1,\quad u(0)= u'(0)= u(1)= u'(1)= 0.NEWLINE\]NEWLINE The author studies the boundary value problem NEWLINE\[NEWLINEu''''= f(x,u),\quad 0< x< 1,\quad u(0)= \alpha,\;u'(0)=\beta,\;u(1)=\gamma,\;-u'(1)= \delta,\tag{1}NEWLINE\]NEWLINE where \(\alpha,\beta,\gamma,\delta\geq 0\), \(f\in (\langle 0,1\rangle\times \mathbb{R}^1_+,\mathbb{R}^1_+)\) is continuous and the following conditions are given NEWLINE\[NEWLINE\liminf_{u\to+\infty} \min_{x\in\langle 0,1\rangle} {f(x,u)\over u}> \lambda_1,\;\limsup_{u\to 0+} \max_{x\in\langle 0,1\rangle} {f(x,u+\xi(x))\over u}< \lambda_1,\tag{2}NEWLINE\]NEWLINE NEWLINE\[NEWLINE\limsup_{u\to+\infty} \max_{x\in\langle 0,1\rangle} {f(x,u)\over u}< \lambda_1,\;\liminf_{u\to 0+} \min_{x\in\langle 0,1\rangle} {f(x,u)\over u}> \lambda_1,\tag{3}NEWLINE\]NEWLINE NEWLINE\[NEWLINE\sup_{u> 0} \min_{x\in \langle 0,1\rangle} {f(x,u)\over u}= +\infty,\;\inf_{u\geq 2\|\xi\|} \max_{x\in \langle 0,1\rangle} {f(x,u)\over u}= 0.\tag{4}NEWLINE\]NEWLINE Here, the proofs of the following results are given:NEWLINENEWLINENEWLINE(A) If (3) is satisfied, then (1) has at least one positive solution.NEWLINENEWLINENEWLINE(B) Let (2) be satisfied. If \(\xi(x)\equiv 0\), \(x\in\langle 0,1\rangle\), then (1) has at least one positive solution. If \(\xi(x)\not\equiv 0\) \(x\in \langle 0,1\rangle\), then (1) has at least two positive solutions.NEWLINENEWLINENEWLINE(C) Let \(f(x,u)\) be increasing in \(u\). If (4) is satisfied, then (1) has at least one positive solution.
    0 references

    Identifiers