Positive solutions for nonlinear elastic beam models (Q5957229)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Positive solutions for nonlinear elastic beam models |
scientific article; zbMATH DE number 1716611
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Positive solutions for nonlinear elastic beam models |
scientific article; zbMATH DE number 1716611 |
Statements
Positive solutions for nonlinear elastic beam models (English)
0 references
6 April 2003
0 references
elastic beam
0 references
positive solution
0 references
eigenvalue
0 references
boundary value problem
0 references
Let \(\lambda_1\) be the first eigenvalue of the problem NEWLINE\[NEWLINEu''''=\lambda u,\quad 0< x< 1,\quad u(0)= u'(0)= u(1)= u'(1)= 0.NEWLINE\]NEWLINE The author studies the boundary value problem NEWLINE\[NEWLINEu''''= f(x,u),\quad 0< x< 1,\quad u(0)= \alpha,\;u'(0)=\beta,\;u(1)=\gamma,\;-u'(1)= \delta,\tag{1}NEWLINE\]NEWLINE where \(\alpha,\beta,\gamma,\delta\geq 0\), \(f\in (\langle 0,1\rangle\times \mathbb{R}^1_+,\mathbb{R}^1_+)\) is continuous and the following conditions are given NEWLINE\[NEWLINE\liminf_{u\to+\infty} \min_{x\in\langle 0,1\rangle} {f(x,u)\over u}> \lambda_1,\;\limsup_{u\to 0+} \max_{x\in\langle 0,1\rangle} {f(x,u+\xi(x))\over u}< \lambda_1,\tag{2}NEWLINE\]NEWLINE NEWLINE\[NEWLINE\limsup_{u\to+\infty} \max_{x\in\langle 0,1\rangle} {f(x,u)\over u}< \lambda_1,\;\liminf_{u\to 0+} \min_{x\in\langle 0,1\rangle} {f(x,u)\over u}> \lambda_1,\tag{3}NEWLINE\]NEWLINE NEWLINE\[NEWLINE\sup_{u> 0} \min_{x\in \langle 0,1\rangle} {f(x,u)\over u}= +\infty,\;\inf_{u\geq 2\|\xi\|} \max_{x\in \langle 0,1\rangle} {f(x,u)\over u}= 0.\tag{4}NEWLINE\]NEWLINE Here, the proofs of the following results are given:NEWLINENEWLINENEWLINE(A) If (3) is satisfied, then (1) has at least one positive solution.NEWLINENEWLINENEWLINE(B) Let (2) be satisfied. If \(\xi(x)\equiv 0\), \(x\in\langle 0,1\rangle\), then (1) has at least one positive solution. If \(\xi(x)\not\equiv 0\) \(x\in \langle 0,1\rangle\), then (1) has at least two positive solutions.NEWLINENEWLINENEWLINE(C) Let \(f(x,u)\) be increasing in \(u\). If (4) is satisfied, then (1) has at least one positive solution.
0 references