A note on a Pettis-Kurzweil-Henstock type integral in Riesz spaces. (Q595856)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on a Pettis-Kurzweil-Henstock type integral in Riesz spaces. |
scientific article; zbMATH DE number 2084027
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on a Pettis-Kurzweil-Henstock type integral in Riesz spaces. |
scientific article; zbMATH DE number 2084027 |
Statements
A note on a Pettis-Kurzweil-Henstock type integral in Riesz spaces. (English)
0 references
6 August 2004
0 references
Let \(R\) be a Dedekind complete Riesz space such that the space \(R^*\) of its order continuous functionals separates the points of \(R\). Let \(X\) be a Hausdorff compact topological space and \(f: X\to R\). In this paper, a Pettis-Kurzweil-Henstock type integral of \(f\) on a compact subset is defined. The connection between improper integrals and integrals on compact subsets is discussed and some convergence theorems are also proved.
0 references
Pettis integral
0 references
Kurzweil-Henstock integral
0 references
Dedekind complete Riesz space
0 references