Continuity for maximal commutators of Bochner-Riesz operators with BMO functions (Q5959679)
From MaRDI portal
scientific article; zbMATH DE number 1721664
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Continuity for maximal commutators of Bochner-Riesz operators with BMO functions |
scientific article; zbMATH DE number 1721664 |
Statements
Continuity for maximal commutators of Bochner-Riesz operators with BMO functions (English)
0 references
3 November 2002
0 references
The authors consider the maximal operator \({\mathfrak B}^{\delta}_{*,b}\) associated with the commutator generated by the Bochner-Riesz operator \({\mathfrak B}^{\delta}_t\) and \(b\in \text{BMO} ({\mathbb R}^n)\), defined by \[ {\mathfrak B}^{\delta}_{*,b}(f)(x)=\sup_{t>0}\left|[b,{\mathfrak B}^{\delta}_t] f(x)\right|, \] where \(\widehat {{\mathfrak B}^{\delta}_t(f)}(\xi)=(1-t^2 |\xi|^2)^{\delta}_+ \hat f (\xi)\) and \[ [b,{\mathfrak B}^{\delta}_t] f(x)=b(x) {\mathfrak B}^{\delta}_tf(x)-{\mathfrak B}^{\delta}_t(bf)(x). \] In this paper, they obtain the following results: (a) If \(p\in (\frac{n}{n+1},1]\) and \(\delta>n(1/p-1/2)-1/2\), then \({\mathfrak B}^{\delta}_{*,b}\) is a bounded operator from \(H^p_b({\mathbb R}^n)\) into \(L^p({\mathbb R}^n)\). (b) If \(p\in (\frac{n}{n+1},1]\) and \(\delta>n(1/p-1/2)-1/2\), then \({\mathfrak B}^{\delta}_{*,b}\) is a bounded operator from \(H^{p,\infty}_b({\mathbb R}^n)\) into \(L^{p,\infty}({\mathbb R}^n)\).
0 references
commutator
0 references
Bochner-Riesz operator
0 references
maximal operator
0 references