Regulators of Siegel units and applications (Q5964556)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Regulators of Siegel units and applications |
scientific article; zbMATH DE number 6547329
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Regulators of Siegel units and applications |
scientific article; zbMATH DE number 6547329 |
Statements
Regulators of Siegel units and applications (English)
0 references
29 February 2016
0 references
regulators
0 references
modular units
0 references
elliptic curves
0 references
\(L\)-functions
0 references
Mahler measures
0 references
Boyd's conjectures
0 references
Zagier's conjectures
0 references
0 references
0.8013452
0 references
0.70075643
0 references
0.69146883
0 references
0.6827056
0 references
0.66837513
0 references
0 references
0.6598448
0 references
0.65513253
0 references
0.65390825
0 references
\textit{W. Zudilin} [Math. Proc. Camb. Philos. Soc. 156, No. 2, 313--326 (2014; Zbl 1386.11129)] proved a formula for the regulator of two modular units. In the paper, the author generalizes the result of Zudilin to arbitrary Siegel units and also give some applications to elliptic curves parametrized by the Siegel units. Let \(f\) and \(g\) be two holomorphic functions on a Riemann surface and \({\eta}(f,g) = \log |f| d \arg g - \log |g| d \arg f\) a real \(1\)-form on the upper half plane, The main result of the paper is the following:NEWLINENEWLINETheorem. Let \(N \geq 1\) be an integer. Let \(u = (a,b)\) and \(v = (c,d)\) be two nonzero vectors in \((\mathbb{Z}/N\mathbb{Z})^2\), and let \(g_u\) and \(g_v\) be the Siegel units associated to \(u\) and \(v\). We have NEWLINE\[NEWLINE{\int}_0^{i\infty}{\eta}(gu, gv) = {\pi}{\Lambda}^{*}(e_{a,d}e_{b,?c }+ e_{a,?d}e_{b,c}, 0) NEWLINE\]NEWLINE where \( e_{a,b }\) is the Eisenstein series of weight \(1\) and level \(N^2\) defined by NEWLINE\[NEWLINEe_{a,b}(\tau)={\alpha}_{0}(a,b)+\sum_{{m,n \geq 1} \atop {m\equiv a, n\equiv b \,(N)}}q^{mn} - \sum_{{m,n \geq 1} \atop {m\equiv -a, n\equiv -b \,(N)}}q^{mn}\quad (q=e^{2{\pi}i{\tau}})NEWLINE\]NEWLINE with NEWLINE\[NEWLINE{\alpha}_{0}(a,b)= \begin{cases} 0 , & \text{if a=b=0}\\ \frac{1}{2}-\{\frac{b}{N}\} , & \text{if \(a=0\) and \(b\neq 0\)}\\ \frac{1}{2}-\{\frac{a}{N} \}, & \text{if \(a\neq 0\) and \(b=0\)}\\ 0, & \text{if \(a\neq 0\) and \(b\neq 0\)}\\ \end{cases}NEWLINE\]NEWLINE Here \({\Lambda}^{*}(f, 0)\) denotes the regularized value of the completed L-function \({\Lambda}(f, s)\) at \(s = 0\).
0 references