A mirror duality for families of \(K3\) surfaces associated to bimodular singularities (Q5965198)

From MaRDI portal
scientific article; zbMATH DE number 6548567
Language Label Description Also known as
English
A mirror duality for families of \(K3\) surfaces associated to bimodular singularities
scientific article; zbMATH DE number 6548567

    Statements

    A mirror duality for families of \(K3\) surfaces associated to bimodular singularities (English)
    0 references
    0 references
    2 March 2016
    0 references
    \textit{M. Mase} and \textit{K. Ueda} [Manuscr. Math. 146, No. 1--2, 153--177 (2015; Zbl 1405.14104)] proved the polytope mirror symmetry for families of \(K3\) surfaces associated to bimodular singularites. In this article, the author tries to extend the polytope mirror symmetry to lattice mirror symmetry of \(K3\) surfaces in the sense of \textit{I. V. Dolgachev} [J. Math. Sci., New York 81, No. 3, 2599--2630 (1996; Zbl 0890.14024)]. The main result is that for six specific polytope mirror pairs, the lattice mirror symmetry holds. The Picard number takes values in the set \(\{2,3,4\}\). This method used in the proof is to give relations between toric geometry and lattice theory, in particular, via the intersection matrices of toric divisors and lattices.
    0 references
    0 references
    bimodular singularites
    0 references
    polytope mirror symmetry
    0 references
    toric geometry
    0 references
    lattice mirror symmetry
    0 references
    families of K3 surfaces
    0 references
    lattice theory
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references