On eigenvalues of rectangular matrices (Q600703)

From MaRDI portal





scientific article; zbMATH DE number 5809086
Language Label Description Also known as
English
On eigenvalues of rectangular matrices
scientific article; zbMATH DE number 5809086

    Statements

    On eigenvalues of rectangular matrices (English)
    0 references
    0 references
    0 references
    1 November 2010
    0 references
    For a given \((k+1)\)-tuple \(A,B_1,\dots,B_k\) of \(m\times n\) matrices with \(m \leq n,\) the set of all \(k\)-tuples of complex numbers \(\{ \lambda_1,\lambda_2,\dots ,\lambda_k \}\) such that the linear combination (pencil) \(A+\lambda_1 B_1+\lambda_2 B_2+\dots +\lambda_k B_k\) has rank smaller than \(m\) is called the eigenvalue locus of the pencil. The authors study a number of properties of the eigenvalue locus in the case \(k=n-m+1\). Theorem 2 is the main result. In the last section some open questions are mentioned.
    0 references
    eigenvalue
    0 references
    rectangular matrix
    0 references
    pencil
    0 references

    Identifiers