On the distribution of integral ideals and Hecke Grössencharacters (Q606353)

From MaRDI portal





scientific article; zbMATH DE number 5816605
Language Label Description Also known as
English
On the distribution of integral ideals and Hecke Grössencharacters
scientific article; zbMATH DE number 5816605

    Statements

    On the distribution of integral ideals and Hecke Grössencharacters (English)
    0 references
    0 references
    17 November 2010
    0 references
    The author proves that for any number field of degree \(n\) over \({\mathbb Q}\) we have that \[ A(x)=cx+O(x^{1-\frac{3}{n+6}+\varepsilon}) \] and \[ B(x)\ll x^{1-\frac{3}{n+6}+\varepsilon}, \] where \(A(x)\) is the number of integral ideals with norm \(\leq x\), \(c\) is the classical constant, and \[ B(x)=\sum_{N({\mathfrak a})\leq x}\lambda({\mathfrak a}), \] \(\lambda\) a Hecke Grössencharacter.
    0 references
    Dedekind zeta-function
    0 references
    integral ideal
    0 references
    Grössencharacter
    0 references

    Identifiers