On the solvability of an abstract Cauchy problem (Q610353)

From MaRDI portal





scientific article; zbMATH DE number 5824127
Language Label Description Also known as
English
On the solvability of an abstract Cauchy problem
scientific article; zbMATH DE number 5824127

    Statements

    On the solvability of an abstract Cauchy problem (English)
    0 references
    8 December 2010
    0 references
    Let \((B,\|\cdot\|)\) be a complex Banach space with zero element \({\overline 0}\). For \(\alpha \in (0,1]\), \(C_{\alpha}= C_{\alpha}([0,T])\) denotes the class of Hölder functions on \([0,T]\) with exponent \(\alpha\). The author considers the Cauchy problem \[ x^{\prime}(t)+Ax(t)=f(t), \quad t\in (0,T], \quad x(0)={\overline 0}, \tag{1} \] and introduces the spaces \(Y, \;Y_1, \;Y_2\) in the following way: \[ \begin{aligned} Y=\{f\in C([0,T],B)\;|\; \exists x\in C([0,T],B) {\text{ solution of (1)}}\}\\ Y_1=\{f\in C([0,T],B)\;|\; \exists x\in C([0,T],B)\cap C^1((0,T],B) {\text{ solution of (1)}}\}\\ Y_2=\{f\in C([0,T],B)\;|\; \exists x\in C^1((0,T],B) {\text{ solution of (1)}}\}\end{aligned} \] The aim of the paper is to construct some spaces that are wider than \(C_{\alpha}\) and are contained in \(Y_2, Y_1\) or \(Y\).
    0 references
    abstract Cauchy problem
    0 references
    Banach space
    0 references
    0 references

    Identifiers