Numerical investigations of non-uniqueness for the Navier-Stokes initial value problem in borderline spaces (Q6103929)
From MaRDI portal
scientific article; zbMATH DE number 7692235
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Numerical investigations of non-uniqueness for the Navier-Stokes initial value problem in borderline spaces |
scientific article; zbMATH DE number 7692235 |
Statements
Numerical investigations of non-uniqueness for the Navier-Stokes initial value problem in borderline spaces (English)
0 references
5 June 2023
0 references
In this paper the authors consider the Cauchy problem for the Navier-Stokes equatios in \((0,\infty)\times \mathbb{R}^3\), \[ \partial_t+u\cdot \nabla u=\Delta u-\nabla p, \quad \nabla \cdot u=0, \quad u(0, \cdot )=u_0, \] and discus the problem of uniqueness of the solutions. \textit{H. Jia} and \textit{V. Šverák} [Invent. Math. 196, No. 1, 233--265 (2014; Zbl 1301.35089)] proved that if \(u_0 \in C^{\infty}(\mathbb{R}^3\setminus {0})\) is scale-invariant, then there exists at least one scale-invariant solution \(u\in C^{\infty}\big( (0,\infty)\times \mathbb{R}^3\big)\) of \((1)\). The scale-invariant solution \(u\) is unique for any small scale-invariant initial datum. On the other hand, Jia and Šverák conjectured that this is not the case for large scale-invariant data. In this paper a numerical evidence of this conjecture is presented.
0 references
Navier-Stokes equations
0 references
Cauchy problem
0 references
Leray-Hopf solutions
0 references
non-uniqueness
0 references
scale-invariant solutions
0 references
0 references
0 references
0 references
0 references
0 references
0 references