Localization in right (*)-serial coalgebras. (Q610732)

From MaRDI portal





scientific article; zbMATH DE number 5825458
Language Label Description Also known as
English
Localization in right (*)-serial coalgebras.
scientific article; zbMATH DE number 5825458

    Statements

    Localization in right (*)-serial coalgebras. (English)
    0 references
    0 references
    0 references
    10 December 2010
    0 references
    Let \(C\) be a coalgebra. A right \(C\)-comodule is uniserial if its lattice of subcomodules is a chain. It is biserial if there are only two maximal chains in the lattice of subcomodules. \(C\) is called right \((*)\)-serial if its right injective indecomposable comodules are uniserial or biserial. \((*)\)-serial coalgebras are characterized using localization techniques: \(C\) is right \((*)\)-serial if and only if each socle-finite localized coalgebra of \(C\) is right \((*)\)-serial.
    0 references
    serial coalgebras
    0 references
    localizations
    0 references
    lattices of subcomodules
    0 references

    Identifiers