Monotonicity properties of the Neumann heat kernel in the ball (Q610770)

From MaRDI portal





scientific article; zbMATH DE number 5825491
Language Label Description Also known as
English
Monotonicity properties of the Neumann heat kernel in the ball
scientific article; zbMATH DE number 5825491

    Statements

    Monotonicity properties of the Neumann heat kernel in the ball (English)
    0 references
    0 references
    0 references
    10 December 2010
    0 references
    The main result of the paper establishes that \(p(t, x, x) < p(t, y, y)\) for \(t > 0\) and \(\| x \|<\|y\| \leq 1\), where \(p\) is the heat kernel for the Laplacian with Neumann boundary conditions on the unit ball in \(\mathbb R^n\) (a conjecture of \textit{R. S. Laugesen} and \textit{C. Morpurgo} [J. Funct. Anal. 155, No.~1, 64--108 (1998; Zbl 0917.47018)]). The proof uses the mirror coupling of reflecting Brownian motions in the unit ball.
    0 references
    0 references
    reflecting Brownian motion
    0 references
    hot spots conjecture
    0 references

    Identifiers