Counting cones over reducible cubic scrolls (Q611928)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Counting cones over reducible cubic scrolls |
scientific article; zbMATH DE number 5826901
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Counting cones over reducible cubic scrolls |
scientific article; zbMATH DE number 5826901 |
Statements
Counting cones over reducible cubic scrolls (English)
0 references
15 December 2010
0 references
Given a reducible cubic scroll of codimension 2 in a hyperplane (in \({\mathbb P}^n\)), the authors construct an explicit parameter space for cones in \({\mathbb P}^n\) for \(4\leq n\leq 6\) with vertices of codimension 4 and 5, respectively. This parameter space is used to compute the numbers of cones that are incident to the appropriate number of linear spaces.
0 references
reducible cubic scroll
0 references
Hilbert scheme
0 references
cones
0 references
compactification
0 references