Newton polygon of \(L\) function of \(x^d + \lambda x^{d -1} + \mu x \) (Q6136707)
From MaRDI portal
scientific article; zbMATH DE number 7732847
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Newton polygon of \(L\) function of \(x^d + \lambda x^{d -1} + \mu x \) |
scientific article; zbMATH DE number 7732847 |
Statements
Newton polygon of \(L\) function of \(x^d + \lambda x^{d -1} + \mu x \) (English)
0 references
31 August 2023
0 references
In the paper under review, the author determines slopes of the \(q\)-adic Newton polygon of the \(L\)-function \[ L^\ast(f,\chi_m,s)=\prod_{z\in|G_m|}\left(1-\chi_m(\mathrm{Frob}(z))s^{\deg(z)}\right)^{-1}, \] where \(f(x)=x^d+\lambda x^{d-1}+\mu x\) is a trinomial in \(\mathbb{F}_q [x]\) and \(\chi_m\) is a character of order \(p^m\). Also, the author determines slopes of the \(q\)-adic Newton polygon of the associated \(L\)-function of the formal power series \(f(x)=x^d+\lambda x^{d-1}+\sum_{n\geq 1}p^n f_n(x)\), and proves that the \(\mathbb{Z}_p\)-tower over \(\mathbb{A}^1\) given by \(f(x)\) is slope stable.
0 references
Newton polygon
0 references
exponential sum
0 references
\(L\) function
0 references
0 references