Newton polygon of \(L\) function of \(x^d + \lambda x^{d -1} + \mu x \) (Q6136707)

From MaRDI portal
scientific article; zbMATH DE number 7732847
Language Label Description Also known as
English
Newton polygon of \(L\) function of \(x^d + \lambda x^{d -1} + \mu x \)
scientific article; zbMATH DE number 7732847

    Statements

    Newton polygon of \(L\) function of \(x^d + \lambda x^{d -1} + \mu x \) (English)
    0 references
    0 references
    31 August 2023
    0 references
    In the paper under review, the author determines slopes of the \(q\)-adic Newton polygon of the \(L\)-function \[ L^\ast(f,\chi_m,s)=\prod_{z\in|G_m|}\left(1-\chi_m(\mathrm{Frob}(z))s^{\deg(z)}\right)^{-1}, \] where \(f(x)=x^d+\lambda x^{d-1}+\mu x\) is a trinomial in \(\mathbb{F}_q [x]\) and \(\chi_m\) is a character of order \(p^m\). Also, the author determines slopes of the \(q\)-adic Newton polygon of the associated \(L\)-function of the formal power series \(f(x)=x^d+\lambda x^{d-1}+\sum_{n\geq 1}p^n f_n(x)\), and proves that the \(\mathbb{Z}_p\)-tower over \(\mathbb{A}^1\) given by \(f(x)\) is slope stable.
    0 references
    0 references
    Newton polygon
    0 references
    exponential sum
    0 references
    \(L\) function
    0 references

    Identifiers