Parabolic methods for ultraspherical interpolation inequalities (Q6160090)
From MaRDI portal
scientific article; zbMATH DE number 7700761
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Parabolic methods for ultraspherical interpolation inequalities |
scientific article; zbMATH DE number 7700761 |
Statements
Parabolic methods for ultraspherical interpolation inequalities (English)
0 references
23 June 2023
0 references
Let \(\mathbb S^d\) be the \(d\)-sphere, \(n\) be a strictly positive parameter, and \(d\mu_n=Z^{-1}\rho^{n-d}d\mu\) be a suitable probability measure such that \(\rho(x)^2=1-(x\cdot\mathbf{e})^2\) with \(\mathbf{e}\in\mathbb S^d\), \(d\mu\) is the uniform probability measure on \(\mathbb S^d\), \(Z_n=\frac{\sqrt{\pi}\Gamma\left(\frac{n}{2}\right)}{\Gamma\left( \frac{n+1}{2}\right)},\) and \(H^1(\mathbb S^d,d\mu_n)\) be the classical Sobolev space w.r.t. \(d\mu_n\). The purpose of the article is to provide a parabolic approach of the following weighted interpolation inequality for \(u\in H^1(\mathbb S^d,d\mu_n).\) \[ \int_{\mathbb S^d}|\nabla u|^2d\mu_n \gtrsim_{n,p} \left(\left[\int_{\mathbb S^d}|u|^pd\mu_n\right]^{2/p}-\int_{\mathbb S^d}|u|^2d\mu_n\right). \]
0 references
Gagliardo-Nirenberg-Sobolev inequalities
0 references
Caffarelli-Kohn-Nirenberg inequalities
0 references
interpolation
0 references
sphere
0 references
flows
0 references
optimal constants
0 references
weights
0 references
ultraspherical operator
0 references
\textit{carré du champ} method
0 references
entropy methods
0 references
nonlinear parabolic equations
0 references
porous media
0 references
fast diffusion
0 references
regularity
0 references
0 references
0 references
0 references
0 references
0 references
0 references