A parameter robust Petrov-Galerkin scheme for advection-diffusion-reaction equations (Q621786)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A parameter robust Petrov-Galerkin scheme for advection-diffusion-reaction equations |
scientific article; zbMATH DE number 5842765
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A parameter robust Petrov-Galerkin scheme for advection-diffusion-reaction equations |
scientific article; zbMATH DE number 5842765 |
Statements
A parameter robust Petrov-Galerkin scheme for advection-diffusion-reaction equations (English)
0 references
28 January 2011
0 references
This paper deals with a singularly perturbed differential equation \[ -(\varepsilon(x) u')'+ a(x) u'+ b(x) u= f(x),\quad x\in (0,1)\setminus\{d_i\}^m_{i=1}, \] where the variable diffusion coefficient \(\varepsilon\) and the other data \(a\), \(b\), \(f\), can be discontinuous at the points \(d_i\in (0,1)\). A parameter-uniform numerical method for such problem is constructed. The authors use a combination of a fitted finite difference operator and a fitted layer-adapted mesh to simplify the analysis of a high-order parameter-uniform globally convergent numerical method. Four numerical examples are given.
0 references
interior layers
0 references
discontinuous diffusion
0 references
Petrov-Galerkin
0 references
0 references
0 references
0 references