Gradient estimates for parabolic \(\mathcal A\)-harmonic equations (Q622390)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Gradient estimates for parabolic \(\mathcal A\)-harmonic equations |
scientific article; zbMATH DE number 5843286
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Gradient estimates for parabolic \(\mathcal A\)-harmonic equations |
scientific article; zbMATH DE number 5843286 |
Statements
Gradient estimates for parabolic \(\mathcal A\)-harmonic equations (English)
0 references
31 January 2011
0 references
The author obtains gradient estimates in Sobolev spaces and Orlicz spaces for weak solutions of the following parabolic \({\mathcal A}\)-harmonic equation \[ u_t-\text{div}\, {\mathcal A}(\nabla u,x,t)= \text{div}\, (|{\mathbf f}|^{p-2}{\mathbf f}) \quad \text{in }\Omega_T=\Omega\times(0,T], \] where \({\mathbf f}\) and \({\mathcal A}\) are given vector fields satisfying suitable conditions.
0 references
Orlicz spaces
0 references
Sobolev spaces
0 references
0 references