Commutant of analytic Toeplitz operators on the Bergman space (Q627554)

From MaRDI portal





scientific article; zbMATH DE number 5859362
Language Label Description Also known as
English
Commutant of analytic Toeplitz operators on the Bergman space
scientific article; zbMATH DE number 5859362

    Statements

    Commutant of analytic Toeplitz operators on the Bergman space (English)
    0 references
    0 references
    0 references
    2 March 2011
    0 references
    The authors study the commutant of Toeplitz operators with polynomial symbols acting on the standard weighted Bergman space on the unit disk. Let \(\rho_F(T_p)\) denote the Fredholm domain of \(T_p\), \(\sigma(T_p)\) denote the spectrum of \(T_p\), and let \(\mathcal{A}'(T_p)\) denote the commutant of \(T_p\). The main result of the paper states that, given a polynomial \(p(z)\), \(\mathcal{A}'(T_p) = \mathcal{A}'(T_{z^l})\), where \(l=\min\{|\mathrm{index}(T_p - \lambda)| : \lambda \in \rho_F(T_p) \cap \sigma(T_p) \}\).
    0 references
    Toeplitz operator
    0 references
    polynomial symbol
    0 references
    weighted Bergman space
    0 references
    commutant
    0 references

    Identifiers