Stickelberger's congruences for absolute norms of relative discriminants (Q628839)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Stickelberger's congruences for absolute norms of relative discriminants |
scientific article |
Statements
Stickelberger's congruences for absolute norms of relative discriminants (English)
0 references
7 March 2011
0 references
Let \(L/K\) be a finite extension of number fields, unramified at \(2\), \({\mathfrak d}_{L/K}\) the discriminant, \(c\) the number of complex places of \(L\) which lie above a real place of \(K\), \(\overline{N}_{K/{\mathbb Q}}({\mathfrak d}_{L/K})\) the absolute norm of \({\mathfrak d}_{L/K}\), \(k\) the maximal subfield of \( {\mathbb Q}(\mu_{2^\infty})\) contained in \(K\), \([k:{\mathbb Q}]=2^m,m\geq 0\). The author proves \[ (-1)^c\overline{N}_{K/{\mathbb Q}}({\mathfrak d}_{L/K})\equiv 1\pmod {4\cdot 2^m}. \]
0 references
number fields
0 references
discriminants
0 references
Stickelberger congruences
0 references
class field theory
0 references