Stickelberger's congruences for absolute norms of relative discriminants (Q628839)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Stickelberger's congruences for absolute norms of relative discriminants
scientific article

    Statements

    Stickelberger's congruences for absolute norms of relative discriminants (English)
    0 references
    0 references
    7 March 2011
    0 references
    Let \(L/K\) be a finite extension of number fields, unramified at \(2\), \({\mathfrak d}_{L/K}\) the discriminant, \(c\) the number of complex places of \(L\) which lie above a real place of \(K\), \(\overline{N}_{K/{\mathbb Q}}({\mathfrak d}_{L/K})\) the absolute norm of \({\mathfrak d}_{L/K}\), \(k\) the maximal subfield of \( {\mathbb Q}(\mu_{2^\infty})\) contained in \(K\), \([k:{\mathbb Q}]=2^m,m\geq 0\). The author proves \[ (-1)^c\overline{N}_{K/{\mathbb Q}}({\mathfrak d}_{L/K})\equiv 1\pmod {4\cdot 2^m}. \]
    0 references
    number fields
    0 references
    discriminants
    0 references
    Stickelberger congruences
    0 references
    class field theory
    0 references

    Identifiers