An oscillation-free adaptive FEM for symmetric eigenvalue problems (Q634617)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An oscillation-free adaptive FEM for symmetric eigenvalue problems |
scientific article; zbMATH DE number 5939386
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An oscillation-free adaptive FEM for symmetric eigenvalue problems |
scientific article; zbMATH DE number 5939386 |
Statements
An oscillation-free adaptive FEM for symmetric eigenvalue problems (English)
0 references
16 August 2011
0 references
The authors apply the finite element method (FEM) to solve the eigenvalue problem for the Laplace and Lamé operators in \(L^{2}(\Omega)\), using a special mesh refinement. Numerical results are obtained for some domains \(\Omega\subset\mathbb R^{2}\).
0 references
eigenvalue problem
0 references
finite elements method
0 references
error bounds
0 references
Laplace operator
0 references
Lamé operators
0 references
mesh refinement
0 references
numerical results
0 references
0 references
0 references
0 references
0 references
0 references
0.89454126
0 references
0.88894475
0 references
0.8886971
0 references
0.8867435
0 references
0.88606566
0 references
0.88410115
0 references
0.8818259
0 references
0.8812989
0 references