A fast-slow dynamical systems theory for the Kuramoto type phase model (Q640038)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A fast-slow dynamical systems theory for the Kuramoto type phase model |
scientific article; zbMATH DE number 5957020
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A fast-slow dynamical systems theory for the Kuramoto type phase model |
scientific article; zbMATH DE number 5957020 |
Statements
A fast-slow dynamical systems theory for the Kuramoto type phase model (English)
0 references
12 October 2011
0 references
The paper studies the Kuramoto system of coupled phase oscillators \[ \theta_i'= \Omega_i + \frac{K}{N}\sum_{j=1}^{N}\sin (\theta_j-\theta_i),\quad i=1,\dots,N. \] The rigorously proven main result states that the complex order parameter defined by \[ R(t)=\frac{1}{N}\sum_{j=1}^{N} e^{i\theta_j(t)} \] asymptotically converges to a constant function as \(N\to\infty\). The convergence is proven in a weak sense.
0 references
Kuramoto model
0 references
fast-slow system
0 references
order parameter
0 references
0 references
0 references
0.9151968
0 references
0.8801217
0 references
0.8782941
0 references
0.8697195
0 references
0.8691106
0 references
0.86909556
0 references
0.86867446
0 references
0 references
0.8671033
0 references