Commuting dual Toeplitz operators on weighted Bergman spaces of the unit ball (Q644612)

From MaRDI portal





scientific article; zbMATH DE number 5968216
Language Label Description Also known as
English
Commuting dual Toeplitz operators on weighted Bergman spaces of the unit ball
scientific article; zbMATH DE number 5968216

    Statements

    Commuting dual Toeplitz operators on weighted Bergman spaces of the unit ball (English)
    0 references
    0 references
    0 references
    4 November 2011
    0 references
    Let \(A^2_{\alpha}(B_n)\) be the standard weighted Bergman space over the unit ball \(B_n\) in \(\mathbb{C}^n\), and let \(P_{\alpha}\) be the corresponding Bergman projection. For a function \(f \in L^{\infty}(B_n)\), the dual Toeplitz operator is defined by \(S_fu = (I-P_{\alpha})(fu)\), for \(u \in (A^2_{\alpha}(B_n))^{\perp}\). The authors study the commutativity, essential commutativity and essential semi-commutativity properties of such dual Toeplitz operators.
    0 references
    dual Toeplitz operator
    0 references
    unit ball
    0 references
    weighted Bergman space
    0 references
    commutativity
    0 references

    Identifiers