Commuting dual Toeplitz operators on weighted Bergman spaces of the unit ball (Q644612)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Commuting dual Toeplitz operators on weighted Bergman spaces of the unit ball |
scientific article; zbMATH DE number 5968216
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Commuting dual Toeplitz operators on weighted Bergman spaces of the unit ball |
scientific article; zbMATH DE number 5968216 |
Statements
Commuting dual Toeplitz operators on weighted Bergman spaces of the unit ball (English)
0 references
4 November 2011
0 references
Let \(A^2_{\alpha}(B_n)\) be the standard weighted Bergman space over the unit ball \(B_n\) in \(\mathbb{C}^n\), and let \(P_{\alpha}\) be the corresponding Bergman projection. For a function \(f \in L^{\infty}(B_n)\), the dual Toeplitz operator is defined by \(S_fu = (I-P_{\alpha})(fu)\), for \(u \in (A^2_{\alpha}(B_n))^{\perp}\). The authors study the commutativity, essential commutativity and essential semi-commutativity properties of such dual Toeplitz operators.
0 references
dual Toeplitz operator
0 references
unit ball
0 references
weighted Bergman space
0 references
commutativity
0 references
0 references
0.95556474
0 references
0.94884956
0 references
0.94602317
0 references
0 references
0 references