inverse function theorem (Q6482806)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: [[]] |
theorem that, if a function is continuously differentiable with nonzero Jacobian determinant at a given point, then it is locally invertible near that point
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | inverse function theorem |
theorem that, if a function is continuously differentiable with nonzero Jacobian determinant at a given point, then it is locally invertible near that point |
Statements
Inv-Fun-Thm-3.png
783 × 728; 10 KB
783 × 728; 10 KB
a counterexample demonstrating the necessity of continuous differentiability in the inverse function theorem: the function 𝑥+2𝑥²sin(¹⁄𝑥) is differentiable (but not continuously so) at 0 and does not admit a local inverse near 0 (English)
kontraŭekzemplo pri la neceso de kontinua derivebleco en la funkcio de la inversa funkcio: la funkcio 𝑥+2𝑥²sin(¹⁄𝑥) estas derivebla (sed ne kontinue derivebla) ĉe 0, kaj loka inversa funkcio mankas ĉirkaŭ 0 (Esperanto)
0 references
0 references
Identifiers
43987214
0 references
inverse function theorem
0 references
1 reference
InverseFunctionTheorem
0 references
