Deformations of Poisson structures by closed 3-forms (Q650516)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Deformations of Poisson structures by closed 3-forms |
scientific article |
Statements
Deformations of Poisson structures by closed 3-forms (English)
0 references
25 November 2011
0 references
This paper studies Poisson brackets of the form \[ \left\{ I,J\right\} =\int_{\mathbb{S}^{1}}\frac{\delta I}{\delta u\left( x\right) }\omega\left( u,u_{x},u_{xx},\dots ,u_{\left( k\right) }\right) \left( \frac{\delta J}{\delta u\left( x\right) }\right) ^{T}dx \] on the space of functionals on the loop space \(\Omega\left( M\right) \) of all smooth loops \(\gamma :\mathbb{S}^{1}\rightarrow M\) in an \(n\)-dimensional manifold \(M\), where \(\omega=\left( \omega^{ij}\right) _{i,j=1}^{n}\) is a matrix-valued function of \(u\in\Omega\left( M\right) \) and its derivatives \(u_{x},u_{xx} ,\dots ,u_{\left( k\right) }\), and \[ \frac{\delta I}{\delta u\left( x\right) }:=\left( \frac{\delta I}{\delta u^{1}\left( x\right) },\dots ,\frac{\delta I}{\delta u^{n}\left( x\right) }\right) . \] It is shown that any Poisson structure \(\omega^{ij}\left( u\right) \) and any closed 3-form \(T_{ijk} \left( u\right) \) generate a Poisson bracket \[ \left\{ I,J\right\} =\int_{\mathbb{S}^{1}}\frac{\delta I}{\delta u\left( x\right) }A\left( u,u_{x}\right) \left( \frac{\delta J}{\delta u\left( x\right) }\right) ^{T}dx, \] where \(A=\left( A^{ij}\right) _{i,j=1}^{n}\) is the matrix-valued function defined by \[ A\left( u,u_{x}\right) =\left( M\left( u,u_{x} \right) \right) ^{-1}\omega\left( u\right) \] with \(M=\left( M^{ij}\right) _{i,j=1}^{n}\) defined by \[ M^{sj}\left( u,u_{x}\right) :=\delta_{sj}+\sum_{p,k}\omega^{sp}\left( u\right) T_{pjk}\left( u\right) u_{x}^{k}. \]
0 references
Poisson structure
0 references
Poisson bracket
0 references
deformation
0 references
closed form
0 references
loop space
0 references
pre-symplectic structure
0 references
symplectic manifold
0 references
skew-symmetric operator
0 references